An Update on the Development of sd-rxRNA® for Retinoblastoma Therapy

Michael Byrne, PhD

ARVO
May 8, 2014

NASDAQ: RXII
This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as “believes,” “anticipates,” “plans,” “expects,” “indicates,” “will,” “intends,” “potential,” “suggests” and similar expressions are intended to identify forward-looking statements. These statements are based on RXi Pharmaceuticals Corporation’s (the “Company”) current beliefs and expectations. Such statements include, but are not limited to, statements about the future development of the Company’s products (including timing of clinical trials and related matters associated therewith), the expected timing of certain developmental milestones, the reporting of unblinded data, potential partnership opportunities, the Company’s competition and market opportunity and pro forma estimates. The inclusion of forward-looking statements should not be regarded as a representation by the Company that any of its plans will be achieved. Actual results may differ from those set forth in this presentation due to risks and uncertainties in the Company’s business, including those identified under “Risk Factors” in the Company’s most recently filed Quarterly Report on Form 10-Q and in other filings the Company periodically makes with the U.S Securities and Exchange Commission. The Company does not undertake to update any of these forward-looking statements to reflect a change in its views or events or circumstances that occur after the date of this presentation.
Program Number: 6020

Disclosure Block:

RNAi Overview

Targeting and Eliminating Disease Genes with sd-rxRNA

1. sd-rxRNA, designed to target a disease gene, is administered to a tissue.
2. sd-rxRNA's drug-like properties enable efficient membrane penetration and accumulation in the cells.
3. sd-rxRNA's structural and chemical modifications enable efficient loading into the RISC complex, where the two strands are split apart and a guide strand is retained within the RISC.
4. Guide strand loaded RISC binds the target mRNA and cleaves it, blocking protein production and achieving a therapeutic effect.
sd-rxRNA combines features of RNAi and antisense technologies. Conventional RNAi is potent and long-lasting, while conventional antisense is clinically relevant and validated PK/PD. Medicinal chemistry has improved cell uptake and PK/PD.

- Single compound designed to not require delivery vehicle
- Robust uptake & silencing in multiple preclinical models
- Structural diversity = novel intellectual property
- Combining many positives of RNAi & antisense, while avoiding many negatives
- Provides for broad pipeline of RNAi drugs for unmet medical needs

sd-rxRNA therapeutic compounds with drug-like properties
sd-rxRNA: Robust Cellular Uptake in vitro and in vivo

Delivery and silencing demonstrated in many different cell types
Human, Primate, Rat, Mouse, Adherent, Non-adherent, Primary, Transformed

Efficient delivery of sd-rxRNA to multiple tissues in vivo upon local and systemic administration

Keratinocytes human primary
ARPE-19 retinal pigment epithelium
SH-SY5Y neuroblastoma
Macrophages primary mouse
Hepatocytes primary mouse

Skin
Eye
Spinal cord
Alveolar macrophages
Liver
sd-rxRNA: Improved Retinal Delivery and Extended Silencing in vivo

Mouse

Immediately post dose

24 h

24 h

Rabbit

24 h

Twenty-four hours post injection:

- Fluorescently-labeled sd-rxRNA detected in all retinal layers in mouse and rabbit
- sd-rxRNA treatment results in statistically significant reduction of target-specific mRNA levels for weeks.
sd-rxRNA: Dose Dependent Silencing in vitro in Retinoblastoma Cells

PPIB mRNA levels were reduced in a dose dependent manner relative to non-targeting control (NTC) sd-rxRNA 48 hours post administration.

- Model sd-rxRNAs were designed to target PPIB, a ubiquitously expressed gene.
- 50,000 cells per well were treated with PPIB targeting sd-rxRNAs at 0.01, 0.025, 0.05, 0.1, 0.3, and 1 uM.
- At 48 hours, PPIB mRNA levels were quantified by a branched DNA assay.
Uptake of sd-rxRNA *in vivo* in Mouse Retina and Tumor Cells 24 hr Post Injection

Twenty-four hours post injection

a) sd-rxRNA (red) co-localized with tumor cells (green) in the subretinal space

b) sd-rxRNA co-localized with tumor cells in the vitreous

c) sd-rxRNA is visible in the retina

- Mouse eyes were seeded subretinally with Y79 retinoblastoma cells
- 10 µg of DY547-labeled sd-rxRNA (red) was administered by intravitreal injection (1µl) 3 weeks after seeding
MDM2 Targeting sd-rxRNA

- Murine double minute gene 2 (MDM2)
- Negative regulator of p53 tumor suppressor pathway
- Increased levels inactivate p53 and prevent its tumor suppressor functions
- Highly expressed in retinoblastomas*
- Required for retinoblastoma cell proliferation and survival*

*Xu et al., 2009. Cell 137: 1018.
MDM2 Targeting sd-rxRNA Selection

Designed 25 compounds based on algorithm with multiple selection criteria and tested \textit{in vitro} in RB177 cells in three-point dose-response studies

Identified 7 compounds with dose-dependent reduction of MDM2 mRNA levels

Selected 4 compounds and performed six-point dose response studies in both RB177 and RB176 cells

Identified two compounds to further evaluate \textit{in vitro} and \textit{in vivo}
MDM2 Targeting sd-rxRNA Selection in RB177 cells

NTC = non targeting control sd-rxRNA
Identified 7 compounds with dose-dependent reduction of MDM2 mRNA to further evaluate.

Selected 4 compounds and performed six-point dose response studies in both RB177 and RB176 cells.

<table>
<thead>
<tr>
<th>Oligo #</th>
<th>0.5 uM</th>
<th>0.1 uM</th>
<th>0.05 uM</th>
</tr>
</thead>
<tbody>
<tr>
<td>25803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25804</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25805</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25807</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NTC = non targeting control sd-rxRNA
Selected 4 compounds and performed six-point dose response studies in both RB177 and RB176 cells.
MDM2 sd-rxRNAs Significantly Reduce MDM2 mRNA *in vitro* Through Day 6

- 50,000 cells per well were treated with MDM2 targeting sd-rxRNAs
- MDM2 mRNA levels were quantified by a branched DNA assay
MDM2 sd-rxRNAs Significantly Reduced MDM2 Protein Levels \textit{in vitro}

2-day Post Incubation

<table>
<thead>
<tr>
<th>UTC</th>
<th>25799</th>
<th>25805</th>
<th>NTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDM2 Protein Levels, Relative to NTC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25799</th>
<th>25805</th>
<th>NTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E+00</td>
<td>2.00E-01</td>
<td>4.00E-01</td>
</tr>
<tr>
<td>6.00E-01</td>
<td>8.00E-01</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>1.20E+00</td>
<td>1.00E+00</td>
<td>8.00E-01</td>
</tr>
</tbody>
</table>

4-day Post Incubation

<table>
<thead>
<tr>
<th>UTC</th>
<th>25799</th>
<th>25805</th>
<th>NTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDM2 Protein Levels, Relative to NTC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25799</th>
<th>25805</th>
<th>NTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E+00</td>
<td>2.00E-01</td>
<td>4.00E-01</td>
</tr>
<tr>
<td>6.00E-01</td>
<td>8.00E-01</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>1.20E+00</td>
<td>1.00E+00</td>
<td>8.00E-01</td>
</tr>
</tbody>
</table>
Summary

- sd-rxRNA: self-delivering RNAi compounds
 - Robust cellular uptake in the absence of any delivery vehicle with dose-dependent target-specific silencing *in vitro* and *in vivo*
 - Extended duration of effect (at least 14 days) following a single intravitreal injection in mouse

- Control sd-rxRNA is visible in tumor cells in the subretinal space and in the vitreous 24 hours post injection

- sd-rxRNAs targeting MDM2 designed and screened *in vitro*

- Two compounds selected from screen that exhibit dose dependent reduction of MDM2 mRNA levels *in vitro*

- MDM2 protein levels were also reduced following treatment *in vitro*

- Next steps:
 - Evaluate impact on cell proliferation *in vitro*
 - Evaluate MDM2 sd-rxRNAs in human retinoblastoma cells in an orthotopic mouse xenograft model
Acknowledgments

RXi Pharmaceuticals
- Pamela Pavco
- Karen Bulock
- Lyn Libertine
- Pathi Pandarinathan
- James Cardia
- Katherine Holton

USC-Children’s Hospital Los Angeles
- Hardeep Singh
- Kevin Stachelek
- Donglai Qi
- David Cobrinik

UMass Medical School
- Radouil Tzekov
- Yi Wang
- Shalesh Kaushal

This work is supported by the National Cancer Institute of the National Institutes of Health under Award Number R43CA165899.